Guessing clubs for aD, non D-spaces

Dániel Soukup

Eötvös Loránd University, Institute of Mathematics

Let
$$\lambda > \mu = cf(\mu)$$
 and $S^{\lambda}_{\mu} = \{\alpha \in \lambda : cf(\alpha) = \mu\}$

Definition (Ostaszewski)

A sequence $\{A_{\alpha}: \alpha \in S_{\omega}^{\omega_1}\}$ of subsets of ω_1 is a \P -sequence iff

- A_{α} is a cofinal ω -type sequence in α , and
- for all $A \in [\omega_1]^{\omega_1}$ there is some $\alpha \in S^{\omega_1}_{\omega}$ such that $A_{\alpha} \subseteq A$.

- very useful in **constructive** proofs (set-theory, topology)
- A is independent from ZFC
- many variations (Jensen's \diamondsuit , Juhasz's axiom (t), ...)

Let
$$\lambda > \mu = cf(\mu)$$
 and $S^{\lambda}_{\mu} = \{\alpha \in \lambda : cf(\alpha) = \mu\}.$

Definition (Ostaszewski)

A sequence $\{A_{\alpha}: \alpha \in S_{\omega}^{\omega_1}\}$ of subsets of ω_1 is a \P -sequence iff

- A_{α} is a cofinal ω -type sequence in α , and
- for all $A \in [\omega_1]^{\omega_1}$ there is some $\alpha \in S^{\omega_1}_{\omega}$ such that $A_{\alpha} \subseteq A$.

- very useful in constructive proofs (set-theory, topology)
- A is independent from ZFC
- many variations (Jensen's \diamondsuit , Juhasz's axiom (t), ...)

Let
$$\lambda > \mu = cf(\mu)$$
 and $S^{\lambda}_{\mu} = \{\alpha \in \lambda : cf(\alpha) = \mu\}.$

Definition (Ostaszewski)

A sequence $\{A_{\alpha}: \alpha \in S_{\omega}^{\omega_1}\}$ of subsets of ω_1 is a \clubsuit -sequence iff

- A_{α} is a cofinal ω -type sequence in α , and
- for all $A \in [\omega_1]^{\omega_1}$ there is some $\alpha \in S^{\omega_1}_{\omega}$ such that $A_{\alpha} \subseteq A$.

- very useful in **constructive** proofs (set-theory, topology)
- A is independent from ZFC
- many variations (Jensen's \diamondsuit , Juhasz's axiom (t), ...)

Let
$$\lambda > \mu = cf(\mu)$$
 and $S^{\lambda}_{\mu} = \{\alpha \in \lambda : cf(\alpha) = \mu\}.$

Definition (Ostaszewski)

A sequence $\{A_{\alpha}: \alpha \in S_{\omega}^{\omega_1}\}$ of subsets of ω_1 is a \clubsuit -sequence iff

- A_{α} is a cofinal ω -type sequence in α , and
- for all $A \in [\omega_1]^{\omega_1}$ there is some $\alpha \in S^{\omega_1}_{\omega}$ such that $A_{\alpha} \subseteq A$.

- very useful in constructive proofs (set-theory, topology)
- A is independent from ZFC
- many variations (Jensen's \diamondsuit , Juhasz's axiom (t), ...)

Let
$$\lambda > \mu = cf(\mu)$$
 and $S^{\lambda}_{\mu} = \{\alpha \in \lambda : cf(\alpha) = \mu\}.$

Definition (Ostaszewski)

A sequence $\{A_{\alpha}: \alpha \in S_{\omega}^{\omega_1}\}$ of subsets of ω_1 is a \P -sequence iff

- A_{α} is a cofinal ω -type sequence in α , and
- for all $A \in [\omega_1]^{\omega_1}$ there is some $\alpha \in S^{\omega_1}_{\omega}$ such that $A_{\alpha} \subseteq A$.

- very useful in **constructive** proofs (set-theory, topology)
- A is independent from ZFC
- many variations (Jensen's \diamondsuit , Juhasz's axiom (t), ...)

Let
$$\lambda > \mu = cf(\mu)$$
 and $S^{\lambda}_{\mu} = \{\alpha \in \lambda : cf(\alpha) = \mu\}.$

Definition (Ostaszewski)

A sequence $\{A_{\alpha}: \alpha \in S_{\omega}^{\omega_1}\}$ of subsets of ω_1 is a \clubsuit -sequence iff

- A_{α} is a cofinal ω -type sequence in α , and
- for all $A \in [\omega_1]^{\omega_1}$ there is some $\alpha \in S^{\omega_1}_{\omega}$ such that $A_{\alpha} \subseteq A$.

- very useful in constructive proofs (set-theory, topology)
- A is independent from ZFC
- many variations (Jensen's \diamondsuit , Juhasz's axiom (t), ...)

Let
$$\lambda > \mu = cf(\mu)$$
 and $S^{\lambda}_{\mu} = \{\alpha \in \lambda : cf(\alpha) = \mu\}.$

Definition (Ostaszewski)

A sequence $\{A_{\alpha}: \alpha \in S_{\omega}^{\omega_1}\}$ of subsets of ω_1 is a \clubsuit -sequence iff

- A_{α} is a cofinal ω -type sequence in α , and
- for all $A \in [\omega_1]^{\omega_1}$ there is some $\alpha \in S^{\omega_1}_{\omega}$ such that $A_{\alpha} \subseteq A$.

- very useful in constructive proofs (set-theory, topology)
- A is independent from ZFC
- many variations (Jensen's \diamondsuit , Juhasz's axiom (t), ...)

Shelah's club guessing

Definition

An S^{λ}_{μ} -club sequence is a sequence $\underline{C} = \langle C_{\alpha} : \alpha \in S^{\lambda}_{\mu} \rangle$ such that $C_{\alpha} \subseteq \alpha$ is a club in α of order type μ .

Theorem (Shelah)

Let λ be a cardinal such that $cf(\lambda) \geq \mu^{++}$ for some regular μ . Then there is an S^{λ}_{μ} -club sequence $\underline{C} = \langle C_{\alpha} : \alpha \in S^{\lambda}_{\mu} \rangle$ such that for every club $E \subseteq \lambda$ there is $\alpha \in S^{\lambda}_{\mu}$ (equivalently, stationary many) such that $C_{\alpha} \subseteq E$.

Shelah's club guessing

Definition

An S^{λ}_{μ} -club sequence is a sequence $\underline{C}=\langle C_{\alpha}:\alpha\in S^{\lambda}_{\mu}\rangle$ such that $C_{\alpha}\subseteq \alpha$ is a club in α of order type μ .

Theorem (Shelah)

Let λ be a cardinal such that $cf(\lambda) \geq \mu^{++}$ for some regular μ . Then there is an S_{μ}^{λ} -club sequence $\underline{C} = \langle C_{\alpha} : \alpha \in S_{\mu}^{\lambda} \rangle$ such that for every club $E \subseteq \lambda$ there is $\alpha \in S_{\mu}^{\lambda}$ (equivalently, stationary many) such that $C_{\alpha} \subseteq E$.

Shelah's club guessing

Definition

An S_{μ}^{λ} -club sequence is a sequence $\underline{C}=\langle C_{\alpha}:\alpha\in S_{\mu}^{\lambda}\rangle$ such that $C_{\alpha}\subseteq\alpha$ is a club in α of order type μ .

Theorem (Shelah)

Let λ be a cardinal such that $cf(\lambda) \geq \mu^{++}$ for some regular μ . Then there is an S^{λ}_{μ} -club sequence $\underline{C} = \langle C_{\alpha} : \alpha \in S^{\lambda}_{\mu} \rangle$ such that for every club $E \subseteq \lambda$ there is $\alpha \in S^{\lambda}_{\mu}$ (equivalently, stationary many) such that $C_{\alpha} \subseteq E$.

Shelah's club guessing

Let $\mu=cf(\mu)>\omega$ and take any $S_{\mu}^{\mu^+}$ -club sequence $\underline{C}=\langle C_{\alpha}:\alpha\in S_{\mu}^{\mu^+}\rangle$ such that $C_{\alpha}=\{a_{\alpha}^{\xi}:\xi<\mu\}\subseteq\alpha$.

For every club $E\subseteq \lambda$, there is $\alpha\in S_{\mu}^{\mu^{-}}$ such that

$$\{\xi<\mu: extbf{\textit{a}}_lpha^\xi\in extbf{\textit{E}}\}$$
 is a club.

Theorem (Shelah)

Let $\mu = cf(\mu) > \omega$. Then there is an $S^{\mu^+}_{\mu}$ -club sequence $\underline{C} = \langle C_{\alpha} : \alpha \in S^{\mu^+}_{\mu} \rangle$ such that $C_{\alpha} = \{a^{\xi}_{\alpha} : \xi < \mu\} \subseteq \alpha$ and for every club $E \subseteq \lambda$ there is $\alpha \in S^{\mu^+}_{\mu}$ (equivalently, stationary many) such that:

$$\{ \xi < \mu : extbf{ extit{a}}_lpha^{\xi}, extbf{ extit{a}}_lpha^{\xi+1} \in E \}$$
 is stationary in $\mu.$

Shelah's club guessing

Let $\mu=cf(\mu)>\omega$ and take any $S^{\mu^+}_\mu$ -club sequence $\underline{C}=\langle C_\alpha:\alpha\in S^{\mu^+}_\mu\rangle$ such that $C_\alpha=\{a^\xi_\alpha:\xi<\mu\}\subseteq\alpha$.

For every club $E\subseteq \lambda$, there is $\alpha\in S^{\mu^+}_\mu$ such that

$$\{\xi<\mu:a_lpha^\xi\in E\}$$
 is a club.

Theorem (Shelah)

Let $\mu=cf(\mu)>\omega$. Then there is an $S^{\mu^+}_\mu$ -club sequence $\underline{C}=\langle C_\alpha:\alpha\in S^{\mu^+}_\mu\rangle$ such that $C_\alpha=\{a^\xi_\alpha:\xi<\mu\}\subseteq\alpha$ and for every club $E\subseteq\lambda$ there is $\alpha\in S^{\mu^+}_\mu$ (equivalently, stationary many) such that:

$$\{\xi<\mu: \mathsf{a}_lpha^\xi, \mathsf{a}_lpha^{\xi+1}\in E\}$$
 is stationary in $\mu.$

Shelah's club guessing

Let $\mu=cf(\mu)>\omega$ and take any $S^{\mu^+}_\mu$ -club sequence $\underline{C}=\langle C_\alpha:\alpha\in S^{\mu^+}_\mu\rangle$ such that $C_\alpha=\{a^\xi_\alpha:\xi<\mu\}\subseteq\alpha$.

For every club $E\subseteq \lambda$, there is $lpha\in S^{\mu^+}_\mu$ such that

$$\{\xi < \mu : a_{\alpha}^{\xi} \in E\}$$
 is a club.

Theorem (Shelah)

Let $\mu=cf(\mu)>\omega$. Then there is an $S^{\mu^+}_{\mu}$ -club sequence $\underline{C}=\langle C_{\alpha}: \alpha\in S^{\mu^+}_{\mu} \rangle$ such that $C_{\alpha}=\{a^{\xi}_{\alpha}: \xi<\mu\}\subseteq \alpha$ and for every club $E\subseteq \lambda$ there is $\alpha\in S^{\mu^+}_{\mu}$ (equivalently, stationary many) such that:

$$\{ \xi < \mu : extbf{ extit{a}}_lpha^{\xi}, extbf{ extit{a}}_lpha^{\xi+1} \in E \}$$
 is stationary in $\mu.$

Shelah's club guessing

Let $\mu=cf(\mu)>\omega$ and take any $S_{\mu}^{\mu^+}$ -club sequence $\underline{C}=\langle C_{\alpha}:\alpha\in S_{\mu}^{\mu^+}\rangle$ such that $C_{\alpha}=\{a_{\alpha}^{\xi}:\xi<\mu\}\subseteq\alpha$.

For every club $E\subseteq \lambda$, there is $lpha\in S^{\mu^+}_\mu$ such that

$$\{\xi < \mu : a_{\alpha}^{\xi} \in E\}$$
 is a club.

Theorem (Shelah)

Let $\mu = cf(\mu) > \omega$. Then there is an $S_{\mu}^{\mu^+}$ -club sequence $\underline{C} = \langle C_{\alpha} : \alpha \in S_{\mu}^{\mu^+} \rangle$ such that $C_{\alpha} = \{a_{\alpha}^{\xi} : \xi < \mu\} \subseteq \alpha$ and for every club $E \subseteq \lambda$ there is $\alpha \in S_{\mu}^{\mu^+}$ (equivalently, stationary many) such that:

$$\{\xi < \mu : \mathsf{a}_{\alpha}^{\xi}, \mathsf{a}_{\alpha}^{\xi+1} \in E\}$$
 is stationary in μ .

Coverings --- neighborhood assignments

compact spaces

Definition

An open neighborhood assignment (ONA, in short) on a space (X, τ) is a map $U: X \to \tau$ such that $x \in U(x)$ for every $x \in X$.

X is **compact** \Leftrightarrow for every ONA U on X there is a **finite** $D\subseteq X$ such that $X=\bigcup U[D]$

Coverings → neighborhood assignments

compact spaces

Definition

An open neighborhood assignment (ONA, in short) on a space (X, au) is a map U: X o au such that $x \in U(x)$ for every $x \in X$.

X is **compact** \Leftrightarrow for every ONA U on X there is a **finite** $D\subseteq X$ such that $X=\bigcup U[D]$

Coverings → neighborhood assignments

compact spaces

Definition

An open neighborhood assignment (ONA, in short) on a space (X, τ) is a map $U: X \to \tau$ such that $x \in U(x)$ for every $x \in X$.

X is **compact** \Leftrightarrow for every ONA U on X there is a **finite** $D \subseteq X$ such that $X = \bigcup U[D]$

 $Coverings \longrightarrow neighborhood \ assignments$

compact spaces

Definition

An open neighborhood assignment (ONA, in short) on a space (X, τ) is a map $U: X \to \tau$ such that $x \in U(x)$ for every $x \in X$.

X is **compact** \Leftrightarrow for every ONA U on X there is a **finite** $D \subseteq X$ such that $X = \bigcup U[D]$

Coverings → neighborhood assignments

compact spaces

Definition

An open neighborhood assignment (ONA, in short) on a space (X, τ) is a map $U: X \to \tau$ such that $x \in U(x)$ for every $x \in X$.

X is **compact** \Leftrightarrow for every ONA U on X there is a **finite** $D \subseteq X$ such that $X = \bigcup U[D]$

Definition (E. van Douwen)

X is a D-space iff for every neighborhood assignment U, there is a closed and discrete $D\subseteq X$ (i.e. locally finite) such that $X=\bigcup U[D]$.

- ullet every σ -compact or metric space is a D-space
- ω_1 is not a *D*-space (every closed discrete set is finite, however non compact)

Problem (E. van Douwen)

ls it true, that **every Lindelöf space is a** D-<mark>space</mark>?

Definition (E. van Douwen)

X is a D-space iff for every neighborhood assignment U, there is a closed and discrete $D \subseteq X$ (i.e. locally finite) such that $X = \bigcup U[D]$.

- ullet every σ -compact or metric space is a D-space
- ω_1 is not a *D*-space (every closed discrete set is finite, however non compact)

Problem (E. van Douwen)

Definition (E. van Douwen)

X is a D-space iff for every neighborhood assignment U, there is a closed and discrete $D \subseteq X$ (i.e. locally finite) such that $X = \bigcup U[D]$.

- ullet every σ -compact or metric space is a D-space
- ω_1 is not a *D*-space (every closed discrete set is finite, however non compact)

Problem (E. van Douwen)

Definition (E. van Douwen)

X is a D-space iff for every neighborhood assignment U, there is a closed and discrete $D \subseteq X$ (i.e. locally finite) such that $X = \bigcup U[D]$.

- ullet every σ -compact or metric space is a D-space
- ω_1 is not a *D*-space (every closed discrete set is finite, however non compact)

Problem (E. van Douwen)

Definition (E. van Douwen)

X is a D-space iff for every neighborhood assignment U, there is a closed and discrete $D \subseteq X$ (i.e. locally finite) such that $X = \bigcup U[D]$.

- ullet every σ -compact or metric space is a D-space
- ω_1 is not a *D*-space (every closed discrete set is finite, however non compact)

Problem (E. van Douwen)

 (X, τ) D-space \Leftrightarrow iff for every ONA U, there is a closed and discrete $D \subseteq X$ such that $X = \bigcup U[D]$.

Definition

A cover $\mathcal U$ of a space X is irreducible iff there is no proper subcover of $\mathcal U$.

Definition (Arhangel'skii, 2002)

A space X is an aD-space iff for every closed $F \subseteq X$ and open cover \mathcal{U} of F there is an irreducible open refinement of \mathcal{U} .

irreducible open cover ← ONAs on closed discrete sets

 (X, τ) D-space \Leftrightarrow iff for every ONA U, there is a closed and discrete $D \subseteq X$ such that $X = \bigcup U[D]$.

Definition

A cover \mathcal{U} of a space X is irreducible iff there is no proper subcover of \mathcal{U} .

Definition (Arhangel'skii, 2002)

A space X is an aD-space iff for every closed $F \subseteq X$ and open cover \mathcal{U} of F there is an irreducible open refinement of \mathcal{U} .

irreducible open cover ↔ ONAs on closed discrete sets

 (X, τ) D-space \Leftrightarrow iff for every ONA U, there is a closed and discrete $D \subseteq X$ such that $X = \bigcup U[D]$.

Definition

A cover $\mathcal U$ of a space X is irreducible iff there is no proper subcover of $\mathcal U$.

Definition (Arhangel'skii, 2002)

A space X is an aD-space iff for every closed $F \subseteq X$ and open cover \mathcal{U} of F there is an irreducible open refinement of \mathcal{U} .

irreducible open cover ↔ ONAs on closed discrete sets

 (X, τ) D-space \Leftrightarrow iff for every ONA U, there is a closed and discrete $D \subseteq X$ such that $X = \bigcup U[D]$.

Definition

A cover \mathcal{U} of a space X is irreducible iff there is no proper subcover of \mathcal{U} .

Definition (Arhangel'skii, 2002)

A space X is an aD-space iff for every closed $F \subseteq X$ and open cover \mathcal{U} of F there is an irreducible open refinement of \mathcal{U} .

• irreducible open cover ↔ ONAs on closed discrete sets

 (X, τ) is an aD-space \Leftrightarrow for every closed $F \subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

 (X, τ) is a D-space $\Rightarrow (X, \tau)$ is an aD-space.

Theorem (Arhangel'skii)

Every Lindelöf space is an aD-space.

If every aD-space is a D-space, then every Lindelöf space is a D-space. \checkmark

 (X, τ) is an aD-space \Leftrightarrow for every closed $F \subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

 (X, τ) is a *D*-space \Rightarrow (X, τ) is an *aD*-space.

Theorem (Arhangel'skii)

Every Lindelöf space is an aD-space.

If every *aD*-space is a *D*-space, then **every Lindelöf space is a** *D*-space. ✓

 (X, τ) is an aD-space \Leftrightarrow for every closed $F \subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

 (X, τ) is a *D*-space \Rightarrow (X, τ) is an *aD*-space.

Theorem (Arhangel'skii)

Every Lindelöf space is an aD-space.

If every aD-space is a D-space, then every Lindelöf space is a D-space. \checkmark

 (X, τ) is an aD-space \Leftrightarrow for every closed $F \subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

 (X, τ) is a *D*-space \Rightarrow (X, τ) is an *aD*-space.

Theorem (Arhangel'skii)

Every Lindelöf space is an aD-space.

If every aD-space is a D-space, then every Lindelöf space is a D-space. \checkmark

$aD \Rightarrow D$?

 (X, τ) is an aD-space \Leftrightarrow for every closed $F \subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

$$(X, \tau)$$
 is a D -space $\Rightarrow (X, \tau)$ is an aD -space.

 (X, τ) is Lindelöf $\Rightarrow (X, \tau)$ is an aD-space.

Problem (Arhangel'skii, 2005)

Is it true, that every a D-space is a D-space?

$aD \Rightarrow D$?

 (X, τ) is an aD-space \Leftrightarrow for every closed $F \subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

$$(X, \tau)$$
 is a D -space $\Rightarrow (X, \tau)$ is an aD -space.

 (X, τ) is Lindelöf $\Rightarrow (X, \tau)$ is an aD-space.

Problem (Arhangel'skii, 2005)

Is it true, that every a D-space is a D-space?

Result

 (X, τ) is an aD-space \Leftrightarrow for every closed $F \subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

 (X, τ) is a D-space $\Rightarrow (X, \tau)$ is an aD-space.

Problem (Arhangel'skii, 2005)

Is it true, that every aD-space is a D-space?

Theorem (D. Soukup, 2010)

There exists an aD, non D-space.

- ullet something like ω_1 (a non D-space), but ω_1 in not aD
- with large closed discrete sets (to handle property aD)

Result

 (X, τ) is an aD-space \Leftrightarrow for every closed $F \subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

 (X, τ) is a *D*-space \Rightarrow (X, τ) is an *aD*-space.

Problem (Arhangel'skii, 2005)

Is it true, that **every** aD-space is a D-space?

Theorem (D. Soukup, 2010)

There exists an aD, non D-space.

- something like ω_1 (a non *D*-space), but ω_1 in not *aD*
- with large closed discrete sets (to handle property aD)

Result

 (X, τ) is an aD-space \Leftrightarrow for every closed $F \subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

 (X, τ) is a *D*-space \Rightarrow (X, τ) is an *aD*-space.

Problem (Arhangel'skii, 2005)

Is it true, that every a D-space is a D-space?

Theorem (D. Soukup, 2010)

There exists an aD, non D-space.

- ullet something like ω_1 (a non D-space), but ω_1 in not aD
- with large closed discrete sets (to handle property aD)

Result

 (X, τ) is an aD-space \Leftrightarrow for every closed $F \subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

 (X, τ) is a *D*-space \Rightarrow (X, τ) is an *aD*-space.

Problem (Arhangel'skii, 2005)

Is it true, that every a D-space is a D-space?

Theorem (D. Soukup, 2010)

There exists an aD, non D-space.

- ullet something like ω_1 (a non D-space), but ω_1 in not aD
- with large closed discrete sets (to handle property aD)

We need the following parameters:

- infinite cardinals $\lambda > \mu = cf(\mu)$,
- ullet a MAD family $\mathcal{M}\subseteq [\mu]^\mu$, enumerated as $\mathcal{M}=\{M^{arphi}: arphi<\kappa\}$,
- ullet an S_{μ}^{λ} -club sequence $\underline{C}=\{C_{lpha}: lpha \in S_{\mu}^{\lambda}\}.$

We define a space $X=X[\lambda,\mu,\mathcal{M},\underline{C}]$ on a subset of $\lambda\times\kappa$

- $X_{\alpha} = \{(\alpha, 0)\}$ for $\alpha \in \lambda \setminus S_{\mu}^{\lambda}$,
- $X_{\alpha} = \{\alpha\} \times \kappa \text{ for } \alpha \in S_{\mu}^{\lambda}.$

We need the following parameters:

- infinite cardinals $\lambda > \mu = cf(\mu)$,
- ullet a MAD family $\mathcal{M}\subseteq [\mu]^\mu$, enumerated as $\mathcal{M}=\{M^\varphi:\varphi<\kappa\}$,
- an S_{μ}^{λ} -club sequence $\underline{C} = \{C_{\alpha} : \alpha \in S_{\mu}^{\lambda}\}.$

We define a space $X=X[\lambda,\mu,\mathcal{M},\underline{C}]$ on a subset of $\lambda\times\kappa$

- $X_{\alpha} = \{(\alpha, 0)\}$ for $\alpha \in \lambda \setminus S_{\mu}^{\lambda}$,
- $X_{\alpha} = \{\alpha\} \times \kappa \text{ for } \alpha \in S_{\mu}^{\lambda}.$

We need the following parameters:

- infinite cardinals $\lambda > \mu = cf(\mu)$,
- ullet a MAD family $\mathcal{M}\subseteq [\mu]^\mu$, enumerated as $\mathcal{M}=\{M^{arphi}: arphi<\kappa\}$,
- ullet an S_{μ}^{λ} -club sequence $\underline{C}=\{C_{lpha}: lpha \in S_{\mu}^{\lambda}\}.$

We define a space $X=X[\lambda,\mu,\mathcal{M},\underline{C}]$ on a subset of $\lambda\times\kappa$.

- $X_{\alpha} = \{(\alpha, 0)\}$ for $\alpha \in \lambda \setminus S_{\mu}^{\lambda}$,
- $X_{\alpha} = \{\alpha\} \times \kappa \text{ for } \alpha \in S_{\mu}^{\lambda}.$

We need the following parameters:

- infinite cardinals $\lambda > \mu = cf(\mu)$,
- ullet a MAD family $\mathcal{M}\subseteq [\mu]^\mu$, enumerated as $\mathcal{M}=\{\mathit{M}^{arphi}: arphi<\kappa\}$,
- ullet an S_{μ}^{λ} -club sequence $\underline{C}=\{C_{lpha}: lpha\in S_{\mu}^{\lambda}\}.$

We define a space $X=X[\lambda,\mu,\mathcal{M},\underline{\mathcal{C}}]$ on a subset of $\lambda\times\kappa$.

- $X_{\alpha} = \{(\alpha, 0)\}$ for $\alpha \in \lambda \setminus S_{\mu}^{\lambda}$,
- $X_{\alpha} = \{\alpha\} \times \kappa \text{ for } \alpha \in S_{\mu}^{\lambda}.$

We need the following parameters:

- infinite cardinals $\lambda > \mu = cf(\mu)$,
- ullet a MAD family $\mathcal{M}\subseteq [\mu]^\mu$, enumerated as $\mathcal{M}=\{\mathit{M}^{arphi}: arphi<\kappa\}$,
- an S^{λ}_{μ} -club sequence $\underline{C} = \{C_{\alpha} : \alpha \in S^{\lambda}_{\mu}\}.$

We define a space $X=X[\lambda,\mu,\mathcal{M},\underline{\mathcal{C}}]$ on a subset of $\lambda\times\kappa$.

- $X_{\alpha} = \{(\alpha, 0)\}$ for $\alpha \in \lambda \setminus S_{\mu}^{\lambda}$,
- $X_{\alpha} = \{\alpha\} \times \kappa \text{ for } \alpha \in S_{\mu}^{\lambda}.$

We need the following parameters:

- infinite cardinals $\lambda > \mu = cf(\mu)$,
- ullet a MAD family $\mathcal{M}\subseteq [\mu]^\mu$, enumerated as $\mathcal{M}=\{\mathit{M}^{arphi}: arphi<\kappa\}$,
- an S^{λ}_{μ} -club sequence $\underline{C} = \{C_{\alpha} : \alpha \in S^{\lambda}_{\mu}\}.$

We define a space $X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$ on a subset of $\lambda \times \kappa$.

- $X_{\alpha} = \{(\alpha, 0)\}$ for $\alpha \in \lambda \setminus S_{\mu}^{\lambda}$,
- $X_{\alpha} = \{\alpha\} \times \kappa \text{ for } \alpha \in S_{\mu}^{\lambda}.$

We need the following parameters:

- infinite cardinals $\lambda > \mu = cf(\mu)$,
- ullet a MAD family $\mathcal{M}\subseteq [\mu]^\mu$, enumerated as $\mathcal{M}=\{\mathit{M}^{arphi}: arphi<\kappa\}$,
- an S^{λ}_{μ} -club sequence $\underline{C} = \{C_{\alpha} : \alpha \in S^{\lambda}_{\mu}\}.$

We define a space $X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$ on a subset of $\lambda \times \kappa$.

- $X_{\alpha} = \{(\alpha, 0)\}$ for $\alpha \in \lambda \setminus S_{\mu}^{\lambda}$,
- $X_{\alpha} = \{\alpha\} \times \kappa \text{ for } \alpha \in S_{\mu}^{\lambda}.$

We need the following parameters:

- infinite cardinals $\lambda > \mu = cf(\mu)$,
- ullet a MAD family $\mathcal{M}\subseteq [\mu]^\mu$, enumerated as $\mathcal{M}=\{\mathit{M}^{arphi}: arphi<\kappa\}$,
- an S^{λ}_{μ} -club sequence $\underline{C} = \{C_{\alpha} : \alpha \in S^{\lambda}_{\mu}\}.$

We define a space $X=X[\lambda,\mu,\mathcal{M},\underline{\mathcal{C}}]$ on a subset of $\lambda\times\kappa$.

- $X_{\alpha} = \{(\alpha, 0)\}$ for $\alpha \in \lambda \setminus S_{\mu}^{\lambda}$,
- $X_{\alpha} = \{\alpha\} \times \kappa \text{ for } \alpha \in S_{\mu}^{\lambda}.$

We need the following parameters:

- infinite cardinals $\lambda > \mu = cf(\mu)$,
- ullet a MAD family $\mathcal{M}\subseteq [\mu]^\mu$, enumerated as $\mathcal{M}=\{\mathit{M}^{arphi}: arphi<\kappa\}$,
- an S^{λ}_{μ} -club sequence $\underline{C} = \{C_{\alpha} : \alpha \in S^{\lambda}_{\mu}\}.$

We define a space $X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$ on a subset of $\lambda \times \kappa$.

- $X_{\alpha} = \{(\alpha, 0)\}$ for $\alpha \in \lambda \setminus S_{\mu}^{\lambda}$,
- $X_{\alpha} = \{\alpha\} \times \kappa \text{ for } \alpha \in S_{\mu}^{\lambda}.$

Defining the topology by neighborhood bases

Let $C_{\alpha}=\{a_{\alpha}^{\xi}:\xi<\mu\}$ denote the increasing enumeration for $\alpha\in S_{\mu}^{\lambda}$. For each $\alpha\in S_{\mu}^{\lambda}$ let

- $I_{\alpha}^{\xi}=(a_{\alpha}^{\xi},a_{\alpha}^{\xi+1}]$ for $\xi\in\operatorname{succ}(\mu)\cup\{0\}$,
- $I_{\alpha}^{\xi} = [a_{\alpha}^{\xi}, a_{\alpha}^{\xi+1}]$ for $\xi \in \lim(\mu)$.

For $lpha \in \mathcal{S}^{\lambda}_{\mu}$, $arphi < \kappa$ and $\eta < \mu$ let

$$U((\alpha,\varphi),\eta) = \{(\alpha,\varphi)\} \cup \bigcup \{X_{\gamma} : \gamma \in \cup \{I_{\alpha}^{\xi} : \xi \in M^{\varphi} \setminus \eta\}\}$$

and let

$$B(\alpha, \varphi) = \{ U((\alpha, \varphi), \eta) : \eta < \mu \}$$

Defining the topology by neighborhood bases

Let $\mathcal{C}_{\alpha}=\{a_{\alpha}^{\xi}:\xi<\mu\}$ denote the increasing enumeration for $\alpha\in\mathcal{S}_{\mu}^{\lambda}$. For each $\alpha\in\mathcal{S}_{\mu}^{\lambda}$ let

- $I_{\alpha}^{\xi} = (a_{\alpha}^{\xi}, a_{\alpha}^{\xi+1}]$ for $\xi \in \operatorname{succ}(\mu) \cup \{0\}$,
- $I_{\alpha}^{\xi} = [a_{\alpha}^{\xi}, a_{\alpha}^{\xi+1}]$ for $\xi \in \lim(\mu)$.

For $lpha \in S^\lambda_\mu$, $arphi < \kappa$ and $\eta < \mu$ let

$$U((\alpha,\varphi),\eta) = \{(\alpha,\varphi)\} \cup \bigcup \{X_{\gamma} : \gamma \in \cup \{I_{\alpha}^{\xi} : \xi \in M^{\varphi} \setminus \eta\}\}$$

and let

$$B(\alpha, \varphi) = \{ U((\alpha, \varphi), \eta) : \eta < \mu \}$$

Defining the topology by neighborhood bases

Let $\mathcal{C}_{\alpha}=\{a_{\alpha}^{\xi}:\xi<\mu\}$ denote the increasing enumeration for $\alpha\in\mathcal{S}_{\mu}^{\lambda}$. For each $\alpha\in\mathcal{S}_{\mu}^{\lambda}$ let

- $I_{\alpha}^{\xi}=(a_{\alpha}^{\xi},a_{\alpha}^{\xi+1}]$ for $\xi\in\operatorname{succ}(\mu)\cup\{0\}$,
- $I_{\alpha}^{\xi} = [a_{\alpha}^{\xi}, a_{\alpha}^{\xi+1}]$ for $\xi \in \lim(\mu)$.

For $lpha \in S^\lambda_\mu$, $arphi < \kappa$ and $\eta < \mu$ let

$$U((\alpha,\varphi),\eta) = \{(\alpha,\varphi)\} \cup \bigcup \{X_{\gamma} : \gamma \in \cup \{I_{\alpha}^{\xi} : \xi \in M^{\varphi} \setminus \eta\}\}$$

and let

$$B(\alpha, \varphi) = \{ U((\alpha, \varphi), \eta) : \eta < \mu \}$$

Defining the topology by neighborhood bases

Let $\mathcal{C}_{\alpha}=\{a_{\alpha}^{\xi}:\xi<\mu\}$ denote the increasing enumeration for $\alpha\in\mathcal{S}_{\mu}^{\lambda}$. For each $\alpha\in\mathcal{S}_{\mu}^{\lambda}$ let

- $I_{\alpha}^{\xi}=(a_{\alpha}^{\xi},a_{\alpha}^{\xi+1}]$ for $\xi\in\operatorname{succ}(\mu)\cup\{0\}$,
- $I_{\alpha}^{\xi} = [a_{\alpha}^{\xi}, a_{\alpha}^{\xi+1}]$ for $\xi \in \lim(\mu)$.

For $lpha \in \mathcal{S}^{\lambda}_{\mu}$, $arphi < \kappa$ and $\eta < \mu$ let

$$U((\alpha,\varphi),\eta) = \{(\alpha,\varphi)\} \cup \bigcup \{X_{\gamma} : \gamma \in \bigcup \{l_{\alpha}^{\xi} : \xi \in M^{\varphi} \setminus \eta\}\}$$

and let

$$B(\alpha,\varphi) = \{ U((\alpha,\varphi),\eta) : \eta < \mu \}$$

Defining the topology by neighborhood bases

Let $\mathcal{C}_{\alpha}=\{a_{\alpha}^{\xi}:\xi<\mu\}$ denote the increasing enumeration for $\alpha\in\mathcal{S}_{\mu}^{\lambda}$. For each $\alpha\in\mathcal{S}_{\mu}^{\lambda}$ let

- $I_{\alpha}^{\xi}=(a_{\alpha}^{\xi},a_{\alpha}^{\xi+1}]$ for $\xi\in\operatorname{succ}(\mu)\cup\{0\}$,
- $I_{\alpha}^{\xi} = [a_{\alpha}^{\xi}, a_{\alpha}^{\xi+1}]$ for $\xi \in \lim(\mu)$.

For $\alpha \in \mathcal{S}^{\lambda}_{\mu}$, $\varphi < \kappa$ and $\eta < \mu$ let

$$U((\alpha,\varphi),\eta) = \{(\alpha,\varphi)\} \cup \bigcup \{X_{\gamma} : \gamma \in \bigcup \{l_{\alpha}^{\xi} : \xi \in M^{\varphi} \setminus \eta\}\}$$

and let

$$B(\alpha, \varphi) = \{ U((\alpha, \varphi), \eta) : \eta < \mu \}$$

Defining the topology by neighborhood bases

Let $\mathcal{C}_{\alpha}=\{a_{\alpha}^{\xi}:\xi<\mu\}$ denote the increasing enumeration for $\alpha\in\mathcal{S}_{\mu}^{\lambda}$. For each $\alpha\in\mathcal{S}_{\mu}^{\lambda}$ let

- $I_{\alpha}^{\xi}=(a_{\alpha}^{\xi},a_{\alpha}^{\xi+1}]$ for $\xi\in\operatorname{succ}(\mu)\cup\{0\}$,
- $I_{\alpha}^{\xi} = [a_{\alpha}^{\xi}, a_{\alpha}^{\xi+1}]$ for $\xi \in \lim(\mu)$.

For $\alpha \in \mathcal{S}^{\lambda}_{\mu}$, $\varphi < \kappa$ and $\eta < \mu$ let

$$U((\alpha,\varphi),\eta) = \{(\alpha,\varphi)\} \cup \bigcup \{X_{\gamma} : \gamma \in \cup \{I_{\alpha}^{\xi} : \xi \in M^{\varphi} \setminus \eta\}\}$$

and let

$$B(\alpha,\varphi) = \{ U((\alpha,\varphi),\eta) : \eta < \mu \}$$

Defining the topology by neighborhood bases

For $\alpha \in S^{\lambda}_{<\mu}$ let $(\alpha,0)$ be an isolated point.

For $\alpha \in S^{\lambda}_{\mu'}$ where $\mu' > \mu$ and $\beta < \alpha$ let

$$U(\alpha,\beta) = \bigcup \{X_{\gamma} : \beta < \gamma \le \alpha\}$$

and let

$$B(\alpha) = \{ U(\alpha, \beta) : \beta < \alpha \}$$

be a base for the point (lpha,0) .

Defining the topology by neighborhood bases

For $\alpha \in S^{\lambda}_{<\mu}$ let $(\alpha,0)$ be an isolated point.

For $\alpha \in S^{\lambda}_{\mu'}$ where $\mu' > \mu$ and $\beta < \alpha$ let

$$U(\alpha,\beta) = \bigcup \{X_{\gamma} : \beta < \gamma \le \alpha\}$$

and let

$$B(\alpha) = \{ U(\alpha, \beta) : \beta < \alpha \}$$

be a base for the point (lpha,0) .

Defining the topology by neighborhood bases

For $\alpha \in S^{\lambda}_{<\mu}$ let $(\alpha,0)$ be an isolated point.

For $\alpha \in S^{\lambda}_{\mu'}$ where $\mu' > \mu$ and $\beta < \alpha$ let

$$U(\alpha,\beta) = \bigcup \{X_{\gamma} : \beta < \gamma \le \alpha\}$$

and let

$$B(\alpha) = \{ U(\alpha, \beta) : \beta < \alpha \}$$

be a base for the point $(\alpha, 0)$.

Fix $\lambda>\mu=cf(\mu)$, a MAD family $\mathcal{M}=\{M^{\varphi}:\varphi<\kappa\}\subseteq [\mu]^{\mu}$ and S_{μ}^{λ} -club sequence \underline{C} .

Claim

The space $X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is 0-dimensional, T_2 and scattered. For any $A \in [\lambda]^{\leq \mu}$ the set $\bigcup \{X_{\alpha} : \alpha \in A\}$ is closed discrete.

Let
$$\pi(F) = \{ \alpha < \lambda : X_{\alpha} \cap F \neq \emptyset \}$$
 for any $F \subseteq X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$.

Claim

Fix $\lambda>\mu=cf(\mu)$, a MAD family $\mathcal{M}=\{M^{\varphi}:\varphi<\kappa\}\subseteq [\mu]^{\mu}$ and S_{μ}^{λ} -club sequence \underline{C} .

Claim

The space $X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is 0-dimensional, T_2 and scattered. For any $A \in [\lambda]^{\leq \mu}$ the set $\bigcup \{X_{\alpha} : \alpha \in A\}$ is closed discrete.

Let
$$\pi(F) = \{ \alpha < \lambda : X_{\alpha} \cap F \neq \emptyset \}$$
 for any $F \subseteq X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$.

Claim

Fix $\lambda > \mu = cf(\mu)$, a MAD family $\mathcal{M} = \{M^{\varphi} : \varphi < \kappa\} \subseteq [\mu]^{\mu}$ and S^{λ}_{μ} -club sequence \underline{C} .

Claim

The space $X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is 0-dimensional, T_2 and scattered. For any $A \in [\lambda]^{<\mu}$ the set $\bigcup \{X_{\alpha} : \alpha \in A\}$ is closed discrete.

Let $\pi(F) = \{ \alpha < \lambda : X_{\alpha} \cap F \neq \emptyset \}$ for any $F \subseteq X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$.

Claim

Fix $\lambda>\mu=cf(\mu)$, a MAD family $\mathcal{M}=\{M^{\varphi}:\varphi<\kappa\}\subseteq [\mu]^{\mu}$ and S_{μ}^{λ} -club sequence \underline{C} .

Claim

The space $X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is 0-dimensional, T_2 and scattered. For any $A \in [\lambda]^{<\mu}$ the set $\bigcup \{X_{\alpha} : \alpha \in A\}$ is closed discrete.

Let
$$\pi(F) = \{ \alpha < \lambda : X_{\alpha} \cap F \neq \emptyset \}$$
 for any $F \subseteq X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$.

Claim

Fix $\lambda>\mu=cf(\mu)$, a MAD family $\mathcal{M}=\{M^{\varphi}:\varphi<\kappa\}\subseteq [\mu]^{\mu}$ and S_{μ}^{λ} -club sequence \underline{C} .

Claim

The space $X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is 0-dimensional, T_2 and scattered. For any $A \in [\lambda]^{<\mu}$ the set $\bigcup \{X_{\alpha} : \alpha \in A\}$ is closed discrete.

Let
$$\pi(F) = \{ \alpha < \lambda : X_{\alpha} \cap F \neq \emptyset \}$$
 for any $F \subseteq X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$.

Claim

Fix $\lambda>\mu=cf(\mu)$, a MAD family $\mathcal{M}=\{M^{\varphi}:\varphi<\kappa\}\subseteq [\mu]^{\mu}$ and S_{μ}^{λ} -club sequence \underline{C} .

Claim

If $\alpha \in \pi(F)'$ and $cf(\alpha) \ge \mu$ then $F' \cap X_{\alpha} \ne \emptyset$.

- $cf(\alpha) > \mu \checkmark$
- $cf(\alpha) = \mu$: then $N = \{\xi < \mu : I_{\alpha}^{\xi} \cap \pi(F) \neq \emptyset\}$ has cardinality μ
- \Rightarrow there is $arphi<\kappa$ such that $|M_{arphi}\cap N|=\mu$
- $\Rightarrow (\alpha, \varphi) \in F' \checkmark$

Fix $\lambda>\mu=cf(\mu)$, a MAD family $\mathcal{M}=\{\mathit{M}^{\varphi}:\varphi<\kappa\}\subseteq [\mu]^{\mu}$ and $\mathit{S}_{\mu}^{\lambda}$ -club sequence $\underline{\mathit{C}}$.

Claim

If $\alpha \in \pi(F)'$ and $cf(\alpha) \ge \mu$ then $F' \cap X_{\alpha} \ne \emptyset$.

- $cf(\alpha) > \mu \checkmark$
- $cf(\alpha) = \mu$: then $N = \{\xi < \mu : I_{\alpha}^{\xi} \cap \pi(F) \neq \emptyset\}$ has cardinality μ
- \Rightarrow there is $arphi<\kappa$ such that $|M_{arphi}\cap N|=\mu$
- $\Rightarrow (\alpha, \varphi) \in F' \checkmark$

Fix $\lambda>\mu=cf(\mu)$, a MAD family $\mathcal{M}=\{M^{\varphi}:\varphi<\kappa\}\subseteq [\mu]^{\mu}$ and S_{μ}^{λ} -club sequence \underline{C} .

Claim

If $\alpha \in \pi(F)'$ and $cf(\alpha) \ge \mu$ then $F' \cap X_{\alpha} \ne \emptyset$.

- $cf(\alpha) > \mu \checkmark$
- $cf(\alpha) = \mu$: then $N = \{\xi < \mu : I_{\alpha}^{\xi} \cap \pi(F) \neq \emptyset\}$ has cardinality μ
- \Rightarrow there is $arphi<\kappa$ such that $|M_{arphi}\cap N|=\mu$
- $\Rightarrow (\alpha, \varphi) \in F' \checkmark$

Fix $\lambda > \mu = cf(\mu)$, a MAD family $\mathcal{M} = \{M^{\varphi} : \varphi < \kappa\} \subseteq [\mu]^{\mu}$ and S^{λ}_{μ} -club sequence \underline{C} .

Claim

If $\alpha \in \pi(F)'$ and $cf(\alpha) \ge \mu$ then $F' \cap X_{\alpha} \ne \emptyset$.

- $cf(\alpha) > \mu \checkmark$
- $cf(\alpha) = \mu$: then $N = \{\xi < \mu : I_{\alpha}^{\xi} \cap \pi(F) \neq \emptyset\}$ has cardinality μ
- \Rightarrow there is $arphi<\kappa$ such that $|\mathit{M}_{arphi}\cap\mathit{N}|=\mu$
- $\Rightarrow (\alpha, \varphi) \in F' \checkmark$

Fix $\lambda > \mu = cf(\mu)$, a MAD family $\mathcal{M} = \{M^{\varphi} : \varphi < \kappa\} \subseteq [\mu]^{\mu}$ and S^{λ}_{μ} -club sequence \underline{C} .

Claim

If $\alpha \in \pi(F)'$ and $cf(\alpha) \ge \mu$ then $F' \cap X_{\alpha} \ne \emptyset$.

- $cf(\alpha) > \mu \checkmark$
- $cf(\alpha) = \mu$: then $N = \{\xi < \mu : I_{\alpha}^{\xi} \cap \pi(F) \neq \emptyset\}$ has cardinality μ
- \Rightarrow there is $\varphi < \kappa$ such that $|M_{\varphi} \cap N| = \mu$
- \Rightarrow $(\alpha, \varphi) \in F' \checkmark$

Fix $\lambda>\mu=cf(\mu)$, a MAD family $\mathcal{M}=\{M^{\varphi}:\varphi<\kappa\}\subseteq [\mu]^{\mu}$ and S_{μ}^{λ} -club sequence \underline{C} .

Claim

If $\alpha \in \pi(F)'$ and $cf(\alpha) \ge \mu$ then $F' \cap X_{\alpha} \ne \emptyset$.

Corollary

- (i) If $D \subseteq X$ is closed discrete $\Leftrightarrow |\pi(D)| < \mu$.
- (ii) If $cf(\lambda) \ge \mu$ then X is not a D-space.

Fix $\lambda>\mu=cf(\mu)$, a MAD family $\mathcal{M}=\{M^{\varphi}:\varphi<\kappa\}\subseteq [\mu]^{\mu}$ and S^{λ}_{μ} -club sequence \underline{C} .

Claim

If $\alpha \in \pi(F)'$ and $cf(\alpha) \ge \mu$ then $F' \cap X_{\alpha} \ne \emptyset$.

Corollary

- (i) If $D \subseteq X$ is closed discrete $\Leftrightarrow |\pi(D)| < \mu$.
- (ii) If $cf(\lambda) \ge \mu$ then X is not a D-space.

Concerning aD-property

X is an aD-space \Leftrightarrow for every closed $F\subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

Definition

Let $F_{\alpha} = F \cap X_{\alpha}$ for $F \subseteq X$ and $\alpha < \lambda$. A subset $F \subseteq X$ is high enough if

$$\{\alpha < \lambda : |F_{\alpha}| = |F|\}| \ge \mu.$$

The space X is high iff every closed, unbounded $F\subseteq X$ is high enough

Main Theorem

If $cf(\lambda) \ge \mu$ and $X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is high, then X is an aD, non D-space.

Concerning aD-property

X is an aD-space \Leftrightarrow for every closed $F\subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

Definition

Let $F_{\alpha} = F \cap X_{\alpha}$ for $F \subseteq X$ and $\alpha < \lambda$. A subset $F \subseteq X$ is high enough if

$$|\{\alpha < \lambda : |F_{\alpha}| = |F|\}| \ge \mu.$$

The space X is high iff every closed, unbounded $F \subseteq X$ is high enough.

Main Theorem

If $cf(\lambda) \ge \mu$ and $X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is high, then X is an aD, non D-space.

Concerning aD-property

X is an aD-space \Leftrightarrow for every closed $F\subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

Definition

Let $F_{\alpha} = F \cap X_{\alpha}$ for $F \subseteq X$ and $\alpha < \lambda$. A subset $F \subseteq X$ is high enough if

$$|\{\alpha < \lambda : |F_{\alpha}| = |F|\}| \ge \mu.$$

The space X is high iff every closed, unbounded $F \subseteq X$ is high enough.

Main Theorem

If $cf(\lambda) \ge \mu$ and $X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is high, then X is an aD, non D-space.

Advanced properties of $X[\lambda, \mu, \mathcal{M}, \underline{C}]$

Concerning *aD*-property

X is an aD-space \Leftrightarrow for every closed $F\subseteq X$ and open cover $\mathcal U$ of F there is an irreducible open refinement of $\mathcal U$.

Definition

Let $F_{\alpha} = F \cap X_{\alpha}$ for $F \subseteq X$ and $\alpha < \lambda$. A subset $F \subseteq X$ is high enough if

$$|\{\alpha < \lambda : |F_{\alpha}| = |F|\}| \ge \mu.$$

The space X is high iff every closed, unbounded $F \subseteq X$ is high enough.

Main Theorem

If $cf(\lambda) \ge \mu$ and $X = X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is high, then X is an aD, non D-space.

Shelah: if $cf(\lambda) \ge \mu^{++}$ for some regular μ then there is an S^{λ}_{μ} -club sequence such that for every club E there is stationary many $\alpha \in S^{\lambda}_{\mu}$ such that $C_{\alpha} \subseteq E$.

Claim

If $C_{lpha}\subseteq\pi(F)'$ for a closed $F\subseteq X$ and $lpha\in S_{\mu}^{\lambda}$, then $F_{lpha}=X_{lpha}$

Corollary

Shelah: if $cf(\lambda) \geq \mu^{++}$ for some regular μ then there is an S^{λ}_{μ} -club sequence such that for every club E there is stationary many $\alpha \in S^{\lambda}_{\mu}$ such that $C_{\alpha} \subseteq E$.

Claim

If $C_{\alpha} \subseteq \pi(F)'$ for a closed $F \subseteq X$ and $\alpha \in S_{\mu}^{\lambda}$, then $F_{\alpha} = X_{\alpha}$.

Corollary

Shelah: if $cf(\lambda) \geq \mu^{++}$ for some regular μ then there is an S^{λ}_{μ} -club sequence such that for every club E there is stationary many $\alpha \in S^{\lambda}_{\mu}$ such that $C_{\alpha} \subseteq E$.

Claim

If $C_{\alpha} \subseteq \pi(F)'$ for a closed $F \subseteq X$ and $\alpha \in S_{\mu}^{\lambda}$, then $F_{\alpha} = X_{\alpha}$.

Proof.

• $I_{\alpha}^{\xi} \cap \pi(F) \neq \emptyset$ for all $\xi < \mu$

Corollary

Shelah: if $cf(\lambda) \geq \mu^{++}$ for some regular μ then there is an S_{μ}^{λ} -club sequence such that for every club E there is stationary many $\alpha \in S_{\mu}^{\lambda}$ such that $C_{\alpha} \subseteq E$.

Claim

If $C_{\alpha} \subseteq \pi(F)'$ for a closed $F \subseteq X$ and $\alpha \in S_{\mu}^{\lambda}$, then $F_{\alpha} = X_{\alpha}$.

Corollary

Shelah: if $cf(\lambda) \geq \mu^{++}$ for some regular μ then there is an S^{λ}_{μ} -club sequence such that for every club E there is stationary many $\alpha \in S^{\lambda}_{\mu}$ such that $C_{\alpha} \subseteq E$.

If $cf(\lambda) \geq \mu^{++}$ for some regular μ , \underline{C} is an S^{λ}_{μ} -club guessing sequence from Shelah, \mathcal{M} is a MAD on μ of size at least $\lambda \Rightarrow X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is high.

- $2^{\omega} \ge \omega_2$ Let \mathcal{M} be a MAD family on ω of size 2^{ω} and let \underline{C} be an $S_{\omega}^{\omega_2}$ -club guessing sequence from Shelah. Then
- $2^{\omega} = \omega_1$ and $2^{\omega_1} \ge \omega_3$ Let \mathcal{M} be a MAD family on ω_1 of size 2^{ω_1} and let C be an $S_{\omega_1}^{\omega_3}$ -club guessing sequence from Shelah. Then $X[\omega_3,\omega_1,\mathcal{M},C]$ is high.

Shelah: if $cf(\lambda) \ge \mu^{++}$ for some regular μ then there is an S^{λ}_{μ} -club sequence such that for every club E there is stationary many $\alpha \in S^{\lambda}_{\mu}$ such that $C_{\alpha} \subseteq E$.

If $cf(\lambda) \geq \mu^{++}$ for some regular μ , \underline{C} is an S^{λ}_{μ} -club guessing sequence from Shelah, \mathcal{M} is a MAD on μ of size at least $\lambda \Rightarrow X[\lambda,\mu,\mathcal{M},\underline{C}]$ is high.

Corollary

Let \mathcal{M} be a MAD family on ω of size 2^{ω} and let \underline{C} be an $S_{\omega}^{\omega_2}$ -club guessing sequence from Shelah. Then $X[\omega_2,\omega,\mathcal{M},\underline{C}]$ is high.

 $2^{\omega} = \omega_1$ and $2^{\omega_1} \ge \omega_3$ Let \mathcal{M} be a MAD family on ω_1 of size 2^{ω_1} and let \underline{C} be an $S_{\omega_1}^{\omega_3}$ -club guessing sequence from Shelah. Then $X[\omega_3,\omega_1,\mathcal{M},C]$ is high.

Shelah: if $cf(\lambda) \geq \mu^{++}$ for some regular μ then there is an S^{λ}_{μ} -club sequence such that for every club E there is stationary many $\alpha \in S^{\lambda}_{\mu}$ such that $C_{\alpha} \subseteq E$.

If $cf(\lambda) \geq \mu^{++}$ for some regular μ , \underline{C} is an S^{λ}_{μ} -club guessing sequence from Shelah, \mathcal{M} is a MAD on μ of size at least $\lambda \Rightarrow X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is high.

Corollary

 $2^{\omega} \geq \omega_2$ Let \mathcal{M} be a MAD family on ω of size 2^{ω} and let \underline{C} be an $S_{\omega}^{\omega_2}$ -club guessing sequence from Shelah. Then $X[\omega_2,\omega,\mathcal{M},\underline{C}]$ is high.

 $2^{\omega} = \omega_1$ and $2^{\omega_1} \ge \omega_3$ Let \mathcal{M} be a MAD family on ω_1 of size 2^{ω_1} and let \underline{C} be an $S_{\omega_1}^{\omega_3}$ -club guessing sequence from Shelah. Then $X[\omega_3, \omega_1, \mathcal{M}, C]$ is high.

Shelah: if $cf(\lambda) \ge \mu^{++}$ for some regular μ then there is an S^{λ}_{μ} -club sequence such that for every club E there is stationary many $\alpha \in S^{\lambda}_{\mu}$ such that $C_{\alpha} \subseteq E$.

If $cf(\lambda) \geq \mu^{++}$ for some regular μ , \underline{C} is an S^{λ}_{μ} -club guessing sequence from Shelah, \mathcal{M} is a MAD on μ of size at least $\lambda \Rightarrow X[\lambda, \mu, \mathcal{M}, \underline{C}]$ is high.

Corollary

Let \mathcal{M} be a MAD family on ω of size 2^{ω} and let \underline{C} be an $S_{\omega}^{\omega_2}$ -club guessing sequence from Shelah. Then $X[\omega_2,\omega,\mathcal{M},\underline{C}]$ is high.

 $2^{\omega} = \omega_1$ and $2^{\omega_1} \ge \omega_3$ Let \mathcal{M} be a MAD family on ω_1 of size 2^{ω_1} and let \underline{C} be an $S_{\omega_1}^{\omega_3}$ -club guessing sequence from Shelah. Then $X[\omega_3,\omega_1,\mathcal{M},\underline{C}]$ is high.

Shelah: for $\mu=cf(\mu)>\omega$ there is an $S^{\mu^+}_\mu$ -club sequence $\underline{C}\ni C_\alpha=\{a^\xi_\alpha\}_{\xi<\mu}$ such that for every club $E\subseteq \lambda$ there is stationary many $\alpha\in S^{\mu^+}_\mu$ such that:

$$\{\xi<\mu: a_{lpha}^{\xi}, a_{lpha}^{\xi+1}\in E\}$$
 is stationary.

Corollary

Let \underline{C} be an $S_{\omega_1}^{\omega_2}$ -club guessing sequence from Shelah and let \mathcal{M}_{NS} be a nonstationary MAD family on ω_1 . Then $X[\omega_2,\omega_1,\mathcal{M}_{NS},C]$ is high.

Shelah: for $\mu = cf(\mu) > \omega$ there is an $S_{\mu}^{\mu^+}$ -club sequence $\underline{C} \ni C_{\alpha} = \{a_{\alpha}^{\xi}\}_{\xi < \mu}$ such that for every club $E \subseteq \lambda$ there is stationary many $\alpha \in S_n^{\mu^+}$ such that:

$$\{\xi<\mu: a_{lpha}^{\xi}, a_{lpha}^{\xi+1}\in E\}$$
 is stationary.

Corollary

 $2^{\omega_1} = \omega_2$ Let \underline{C} be an $S_{\omega_1}^{\omega_2}$ -club guessing sequence from Shelah and let \mathcal{M}_{NS} be a nonstationary MAD family on ω_1 . Then $X[\omega_2,\omega_1,\mathcal{M}_{NS},\underline{C}]$ is high.

- $2^{\omega} \ge \omega_2$ Let \mathcal{M} be a MAD family on ω of size 2^{ω} and let \underline{C} be an $S_{\omega}^{\omega_2}$ -club guessing sequence from Shelah. Then $X[\omega_2,\omega,\mathcal{M},C]$ is aD. non D.
- $2^{\omega} = \omega_1$ and $2^{\omega_1} \ge \omega_3$ Let \mathcal{M} be a MAD family on ω_1 of size 2^{ω_1} and let \underline{C} be an $S_{\omega_1}^{\omega_3}$ -club guessing sequence from Shelah. Then $X[\omega_3,\omega_1,\mathcal{M},\underline{C}]$ is aD, non D.
 - Let \underline{C} be an $S_{\omega_1}^{\omega_2}$ -club guessing sequence from Shelah and let \mathcal{M}_{NS} be a nonstationary MAD family on ω_1 . Then $X[\omega_2,\omega_1,\mathcal{M}_{NS},C]$ is aD, non D.

- Let \mathcal{M} be a MAD family on ω of size 2^{ω} and let \underline{C} be an $S_{\omega}^{\omega_2}$ -club guessing sequence from Shelah. Then $X[\omega_2, \omega, \mathcal{M}, \underline{C}]$ is aD, non D.
- $2^{\omega}=\omega_1$ and $2^{\omega_1}\geq \omega_3$ Let $\mathcal M$ be a MAD family on ω_1 of size 2^{ω_1} and let $\underline C$ be an $S^{\omega_3}_{\omega_1}$ -club guessing sequence from Shelah. Then $X[\omega_3,\omega_1,\mathcal M,\underline C]$ is aD, non D.
 - Let \underline{C} be an $S_{\omega_1}^{\omega_2}$ -club guessing sequence from Shelah and let \mathcal{M}_{NS} be a nonstationary MAD family on ω_1 . Then $X[\omega_2,\omega_1,\mathcal{M}_{NS},\underline{C}]$ is aD, non D.

- Let \mathcal{M} be a MAD family on ω of size 2^{ω} and let \underline{C} be an $S_{\omega}^{\omega_2}$ -club guessing sequence from Shelah. Then $X[\omega_2,\omega,\mathcal{M},C]$ is aD, non D.
- $2^{\omega} = \omega_1$ and $2^{\omega_1} \ge \omega_3$ Let \mathcal{M} be a MAD family on ω_1 of size 2^{ω_1} and let \underline{C} be an $S_{\omega_1}^{\omega_3}$ -club guessing sequence from Shelah. Then $X[\omega_3,\omega_1,\mathcal{M},\underline{C}]$ is aD, non D.
 - $2^{\omega_1}=\omega_2$ Let \underline{C} be an $S^{\omega_2}_{\omega_1}$ -club guessing sequence from Shelah and let \mathcal{M}_{NS} be a nonstationary MAD family on ω_1 . Then $X[\omega_2,\omega_1,\mathcal{M}_{NS},\underline{C}]$ is aD, non D.

Corollary

Let \mathcal{M} be a MAD family on ω of size 2^{ω} and let \underline{C} be an $S_{\omega}^{\omega_2}$ -club guessing sequence from Shelah. Then $X[\omega_2,\omega,\mathcal{M},C]$ is aD, non D.

 $2^{\omega}=\omega_1$ and $2^{\omega_1}\geq \omega_3$ Let $\mathcal M$ be a MAD family on ω_1 of size 2^{ω_1} and let $\underline C$ be an $S^{\omega_3}_{\omega_1}$ -club guessing sequence from Shelah. Then $X[\omega_3,\omega_1,\mathcal M,\underline C]$ is aD, non D.

Let \underline{C} be an $S_{\omega_1}^{\omega_2}$ -club guessing sequence from Shelah and let \mathcal{M}_{NS} be a nonstationary MAD family on ω_1 . Then $X[\omega_2,\omega_1,\mathcal{M}_{NS},\underline{C}]$ is aD, non D.

- Let \mathcal{M} be a MAD family on ω of size 2^{ω} and let \underline{C} be an $S_{\omega}^{\omega_2}$ -club guessing sequence from Shelah. Then $X[\omega_2,\omega,\mathcal{M},C]$ is aD, non D.
- $2^{\omega}=\omega_1$ and $2^{\omega_1}\geq \omega_3$ Let $\mathcal M$ be a MAD family on ω_1 of size 2^{ω_1} and let $\underline C$ be an $S^{\omega_3}_{\omega_1}$ -club guessing sequence from Shelah. Then $X[\omega_3,\omega_1,\mathcal M,\underline C]$ is aD, non D.
 - Let \underline{C} be an $S_{\omega_1}^{\omega_2}$ -club guessing sequence from Shelah and let \mathcal{M}_{NS} be a nonstationary MAD family on ω_1 . Then $X[\omega_2,\omega_1,\mathcal{M}_{NS},\underline{C}]$ is aD, non D.

Thank you for your attention...

... and I would be happy to answer any questions!